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Interconnected Multilayer Model to Highlight
Condensation and Expansion Mechanisms in a
Retinal Connectome
Robin Duvoisin
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A connectome serves as a complete map detailing the neural connections within a brain
network. To elucidate the intricate relationship between function and structure, these maps
are depicted as graphs, with nodes representing cell bodies and edges symbolizing the
communication between cells. However, the conventional representation oversimplifies the
actual network structure by treating all neurons as uniform entities. In this study, we address
this limitation by introducing a multilayer model. This model involves partitioning the network
into smaller subgraphs based on cell type classifications and incorporating these subgraphs
into distinct layers. While traditional topological algorithms for multilayer networks are
tailored for multiplex models, where nodes remain identical across layers, our investigation
focuses on interconnected models, where layers contain a unique set of nodes. The main
idea of this paper is to present a topological analysis pipeline tailored for interconnected
models. We applied this method on a mouse retina connectome to extract cell type-specific
topological properties. Our findings reveal that the multilayer framework unveils previously
hidden features, including condensation, and unexpected expansion of the information flow.
These findings contribute to a deeper comprehension of retinal computation, emphasizing
the imperative need for further exploration of methodologies for topological analysis in
interconnected multilayer models.

Interconnected Multilayer Network | Retinal Computation | Connectome

The human brain, with approximately 1011 neurons and a connection matrix
of size 10100(1), poses a modeling challenge. Hence, scientists initially studied

smaller networks, including mice’s sensory systems. The visual system is ideal,
consisting of well-known, spatially separated cell types organized into layers.
Additionally, retinal computation is within a preferential range of complexity,
with the ability to extract special features of a visual scene, including color or
luminance contrast, without extensive connections to other neural systems (2). To
better understand this computation, scientists generate connectomes, which are
comprehensive representations of neuron structures and their connections, called
synapses (3). These massive datasets are obtained using imaging methods like
electron microscopy and staining techniques to reconstruct the wiring diagram (4).
In this article, we further investigate the dataset with 950 neurons of mice’s visual
system, constructed by Helmstaedter et al. (3). The connectome is converted into
a network, where nodes represent cell bodies and edges represent communication
channels between cells.

Analyzing brain networks is necessary to observe if visible macroscopic behavior,
such as retinal computation, is attributed to inherent topological properties of
microscopic units, such as a group of cells (1). In this paper, we aim to understand
the relationship between the type of the cell and its impact on the dynamics of
the network. For this purpose, selecting an appropriate model is crucial to observe
localized behavior without generating oversimplification. We opted for a multilayer
model with layers representing the types of cells. This model enables us to observe
structural differences between cell types while preserving the actual layering
structure of the visual system. Previous studies utilizing the multilayer model with
connectomes have already shown significant results (4)(5). Using the layers as a
representation of different communication channels, such as neurotransmitters and
neuromodulators, revealed that two distinct layers give the network the ability to
adapt to the environment (5) and to maintain a form of memory (4). Additionally,
both studies confirmed the presence of central high-degree hubs, called rich-club,
which play a prominent role in regulating the network while providing an efficient
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resent networks with multiple dis-
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information transfer due to their short path lengths with the
rest of the network (4)(5). Our model differs from previous
studies, which predominantly utilized the multiplex subtype,
where nodes remain identical across layers. In our model,
termed an interconnected multilayer representation (6) or
interacting network (7), a node can only be represented in
one layer. We suspect an overrepresentation of the multiplex
model in connectome transformations due to the lack of
equations describing interconnected multilayer topological
analysis. Effectively, most papers providing insight into
multilayer analysis focus on frameworks for multiplex models
without generalization for the interconnected multilayer
(6)(8)(9).
In this paper, the first objective is to demonstrate that the
interconnected multilayer representation of the connectome
is more optimal than a monolayer model. The second goal is
to generalize the topological analysis pipeline from multiplex
to interconnected multilayer networks. This will be achieved
through the computation of different properties such as the
rich-club and local clustering coefficient. Our results show
that, through appropriate modeling, we have been able to
reveal localized dynamics, such as feedforward/feedback
patterns and information expansion/condensation, that
are hidden in an oversimplified monolayer model. We
highlighted the presence of a layer-specific rich-club hub.
All of these assertions are made in comparison to a null
model, characterized by randomized graphs that maintain a
similar degree distribution within and between the layers as
observed in the original network. To facilitate comprehension
of forthcoming results, we will begin by providing a brief
overview of the retinal network and its functionality.

1. Mulitlayer Representation

A. Description of the Retinal Network. In a broader context,
sensory organs play a crucial role in capturing and transducing
physical properties from the surrounding environment. The
signal is then transmitted to the sensory cortex, where neural
computation extracts a meaningful representation of the
world to enable behavioral adaptation of the organism. In
the visual pathway, the mouse retina consists of around 6.4
million light-sensitive receptor cells and around 2000 ganglion
cells responsible for transferring information to the central
nervous system (CNS) (10). As mentioned in the article from
Nassi J. et al. (2), this extreme difference in cell density
suggests the necessity to condense the signal for a bottleneck
passage in order to reach higher neural systems. Given the
fixed surface of reactivity determined by eye size, a trade-off
emerges between having more optical nerves for increased
information transmission to the CNS and capturing fewer
photons due to limited space for photoreceptor cells (2). The
retina network is required to condense and decompose inputs
to generate parallel specialized pathways for optic nerves,
containing information such as luminance and color contrasts
(2). We will now outline the complete retinal processing
pathway in a step-by-step manner.
Initially, photons hit a photoreceptor cell, and the signal is
transduced through a change in the cell membrane potential.
Bipolar cells (BC), forming the second layer, detect this
modification. Bipolar cells then connect with ganglion cells
(GC) directly or indirectly through amacrine cells (AC) (see

schematic in the Appendix 9). Ganglions generate optic
nerves that reach the cortex. In this article, we will focus
on the Inner Plexiform Layer (IPL) containing connections
between amacrine, bipolar, and ganglion synapses (11). It is
important to note that, unlike typical neurons, a change in
the membrane potential of a retinal cell does not necessarily
induce an action potential (i.e. a non-linear response releasing
chemical informative substances, named neurotransmitters,
if a threshold is reached). Instead, multiple retinal cells
communicate through gap junctions (12)(13), enabling rapid
electrical transmission between cells without depending on a
threshold (11). As the central nervous system relies mostly
on action potentials, there is a transfer of information space
from gap junctions to classical synaptic neurotransmitter
release.
To comprehend the complete computation made by the
retinal network, we can compare the difference between the
input at the first stage and the output at the last stage
of the process. Photoreceptor cells respond to a set of
localized photons on a surface similar to their cell diameter.
In contrast, Ganglion cells generate an output if they are
excited by a larger light pattern with a Difference of Gaussian
structure. Ganglion cells can intricately integrate two circular
receptive fields: one responding to an increase and one to
a decrease in light intensity, defining a contrast (2). This
processing is accomplished by comparing the input from one
photoreceptor with its surroundings and averaging/weighting
the information based on the input’s location. For a visual
representation of this concept, please refer to the image
illustrating the receptive field of a ganglion cell in Appendix
10. With a deeper understanding of the processing abilities
and structure of the retinal network, we will now present our
argument regarding the choice of the multilayer model.

B. ”Why not a modular network?”. After deciding to represent
the retinal network with nodes corresponding to cell bodies
and synapses as edges, our intial intuition, based on the
retina’s description, led us to consider a monolayer modular
network, with a module dedicated to each cell type. In
network science, a modular model is defined as a network
containing groups of nodes with distinct properties that are
more connected together compared to the rest of the network
(14). However, a brief modular analysis of the network,
illustrated in the image 11 & 12, reveals that separation
based on edges connections did not align with distinct cell
types. We assert that a multilayer representation would be a
more appropriate model because each layer is characterized
by different dynamics and properties. First, we observe
that all cell types within the network influence the retinal
processing at different stages. Furthermore, these cell types
utilize various communication methods, involving distinct
neurotransmitters (e.g. Glutamate for BC and GC and
GABA for Amacrine (6)) and different types of channels
(only gap junctions for BC, action potential for GC and
both for Amacrine cells (15)). Additionally, it has been
demonstrated that the extracellular space varies significantly
(i.e. five times greater in a few micrometers) between the
layers. The amount of extracellular space available can modify
the osmotic properties of the environment, leading to different
diffusion constants for neurotransmitters, equivalent to having
different time dynamics (16). Finally, the cell types operate
on different processing planes, with Amacrine cells being more
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Fig. 1. a) Partial representation of the interconnected multilayer model with 5%
of nodes per layer randomly selected. The partial depiction provides insight into
variations in edge density within the layers. A complete table providing the numbers
of edges and nodes per layer is provided in the Appendix 1. b) Complete intralayer
graphs with GC = ganglion cells, MWAC = medium/wide-field amacrine cell, NAC =
narrow amacrine cell, BC = bipolar cell.

horizontally oriented, establishing broad connections from
different locations of the visual field compared to Bipolar
and Ganglion cells, which are more vertically connected and
specialized to one location of the visual field (Appendix Image
9). For all the aforementioned reasons, we opted for an
undirected multilayer representation with 4 different types of
layers (Image 1), one for each cell type with a separation of the
amacrine cell into two groups distinct by their spreadability,
the narrow-field (NAC) and the medium/wide-field (MWAC)
as it has been done in the initial article on the connectome
(4). To analyze this network, it is necessary to characterize
topological equations and definitions within the monolayer
model before extending it to a multilayer representation. In
the following section, we will introduce the rich-club and the
local clustering coefficient, which will be employed to describe
the network properties in later sections.

C. Mathematical description. A network graph G is charac-
terized by a set of nodes V = {vi|i ∈ [1, . . . , N ]} and a set
of edges E = {eij |(i, j) ∈ V × V } (9), represented by the
weighted adjacency matrix A ∈ RN×N:

Aij =
{

wij , Weight of the edge between node i and j

0, else

Building upon the work by Boccaletti et al. (6), we extent
the definition to the multilayer model with M = (G,E) for
G a set of graphs in M layers G = {Gα = (Vα, Eα)|α ∈
[1, . . . , M ]} and E = {Eαβ ⊆ Vα×Vβ |(α, β) ∈ [1, . . . , M ], α ̸=
β} a set of edges interconnecting the different layers α and β.
The Latin letters (i, j) represent the monoplane indices, and
the Greek letters (α, β) are associated with the layer indices
(6). E represents the interlayer connections, and Eα represents
the intralayer connections (6). The supra-adjacency matrix
A contains the intralayer symmetrical matrix A[α] ∈ RNα×Nα

for (i, j) ∈ [1, . . . , Nα] and α ∈ [1, . . . , M ] :

aα
ij =

{
wα

ij , Weight of (vα
i , vα

j ) ∈ Eα

0, else

And the interlayer matrix A[αβ] ∈ RNα×Nβ with (α, β) ∈
[1, . . . , M ],α ̸= β for i ∈ [1, . . . , Nα], j ∈ [1, . . . , Nβ ]:

a
[α,β]
ij =

{
w

[α,β]
ij , Weight of (vα

i , vβ
j ) ∈ Eα,β

0, else

During the analysis, we will compare a global monolayer
representation written G = (V, E) with the multilayer one.
The union of inter- and intralayer connections forms the set of
monolayer edges, and the union of nodes across all layers will
generate our set of monolayer nodes. According to Boccaletti
et al. (6), the relation between the two is noted as:

E =

(
M⋃

α=1

Eα

)⋃ M⋃
α,β=1
α̸=β

Eαβ

 V =
M⋃

α=1

Vα

Multilayer models encompass various subtypes, with one
simplified version being the multiplex model, where nodes
are identical across all layers, leading to V = Vα and
N = Nα∀α ∈ [1, . . . , M ]. This leads to inter- and intralayer
adjacency matrices with the same dimensions, denoted as
Amulitplex ∈ RNM×NM, facilitating linear algebra formulas
(9). An illustration depicting the difference between the two
models can be found in Appendix 13. Now, we aim to extend
the multiplex definitions of topological properties, including
overlap degree, rich-club, and local clustering coefficient,
found in scientific articles (6)(8) to an interconnected model.

The degree of a node i is defined as the number of edges
in contact with vi. In a multilayer network, the presence
of layers degrees allows us to define the overlapping degree
as the sum of interlayer and intralayer degrees (9). This is
calculated using Equation 1 on the supra-adjacency matrix
A, with Ntot as the total number of nodes in the network, M
as the number of layers, and Nα as the number of nodes in
the layer α.

Ntot =
M∑

α=1

Nα Overlapi =
Ntot∑
j=1

Ai,j [1]

If high-degree nodes tend to be more connected together
than the null hypothesis, we refer to them as rich-club. For
each degree k, the coefficient Ω(k) is computed through
the division of the number of edges Ek, connecting two
nodes having degrees greater than k, with the number of
nodes Nk, having degrees greater than k (Equation 2). The
coefficient is normalized by an average of the results obtained
by a random network that conserves the degree distribution
(9). To extend the calculation to the multilayer model, we
compute the coefficient using the adjacency matrix A[α,β]

and vectors indicating whether the node degrees between
layers α and β are greater than k. These vectors are denoted
as bool degα ∈ RNα×1 and bool degβ ∈ R1×Nβ , where Nα

represents the number of nodes in the layer α (similar for
layer β). E

[α,β]
k represents the number of edges between

the two layers connecting nodes with degrees greater than
k, and the numbers of nodes with degrees greater than k
are denoted as Nα

k and Nβ
k respectively. A case-specific

modification is required for the matrix-centered Equation 5,
where the counting of edges and nodes occurs twice for the
intralayer case (i.e. symmetrical matrices).

Robin Duvoisin PNAS — February 21, 2024 — vol. XXX — no. XX — 3
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ΩMonolayer(k) = 2Ek

Nk(Nk − 1) [2]

bool degα =

{
1, if

∑Nβ

j=1 A
[α,β]
i,j > k

0, else

Nα
k =

Nα∑
i=1

bool degα
i [3]

E
[α,β]
k = (bool degα)T ×A[α,β] × (bool degβ)T [4]

Ω(k) =


2E

[α,β]
k

(Nα
k

+N
β
k

)((Nα
k

+N
β
k

)−1)
, for α ̸= β

E
[α,β]
k

(Nα
k

)((Nα
k

)−1) , for α = β

[5]

In the monolayer model, the local clustering coefficient,
Ci, serves as an indicator to determine whether ”the friend
of my friend is also my friend”, as defined in Newman’s book
(17). Put simply, the local clustering coefficient of the node
vi is defined as the ratio of connected pairs of neighbors
of vi to the total number of possible pairs of neighbors,
equivalent to 1

2 ki(ki − 1), where ki represents the degree
of node i (9). Defining a similar parameter for the multilayer
model is challenging because the meaning of a friendship
triangle between layers varies depending on the model (8).
In the multiplex model, where a node vi appears in multiple
layers, the parameter is measured through the generation of a
projection network that condenses the connections of multiple
layers (for more information, refer to the review by Boccaletti
et al. (6)). In our model, we have chosen to distinguish
three types of local clustering parameters. The first one
corresponds to a horizontal coefficient, measuring the trivial
monolayer equation on the intralayer graph. The second and
third one emerges from the dataset’s particular feature: the
information flow. As layers also represent stages of processing,
a triangle containing one node in a high-level layer and two
nodes in a deeper one is considered as an ”expansion” of
the information. In contrast, a triangle with two nodes in
a high-level layer converging to one node in a lower layer
is defined as condensation (Image 2). For the multilayer
model, the total number of possible pairs of neighbors is
layer-specific, equivalent to 1

2 k
[α→β]
i (k[α→β]

i −1), where k
[α→β]
i

represents the degree of node i in layer α connecting to layer
β. Equation 8 defines the expansion clustering coefficient
from the high-level layer α containing node i to layer β. The
condensation clustering coefficient of the same system would
have an equivalent formula with [β → α].

C monolayeri = Nbr connected pairs of neighbors of i
1
2 ki(ki − 1)

[6]

k
[α→β]
i =

Nβ∑
j=1

A
[α,β]
i,j [7]

Exp Cα→β
i = 2Nbr Expansion T riangles

k
[α→β]
i (k[α→β]

i − 1)
[8]

To evaluate the significance of the above-mentioned
network features, a comparison with a null graph model

Fig. 2. a) The three types of ”friendship” triangles that define the local clustering
coefficient. The arrow represents the information flow, with the green layer at an
early stage of the retinal processing relative to the brown layer. From left to right,
we observe the expansion and the condensation effect in an interlayer graph. The
last image represents the trivial horizontal monolayer category. b) The double-edge
swap on a multilayer graph. The left side shows the initial graph, and the right side
shows the same graph after the transformation.

is essential. In the study conducted by Bentley et al. (5),
the double-edge swap algorithm was employed to generate
randomized versions of a multiplex connectome. The primary
objective of this algorithm is to exchange two existing edges,
thereby altering the network’s structure while preserving
the degree distribution. Specifically, the two selected edges
[(a → b), (c → d)] are transformed into [(a → d), (c →
b)]. The extension of this algorithm to an interconnected
multilayer matrix is possible by selecting nodes from different
layers. Let’s define layers α and β with the respective
interadjacency matrix A[αβ]. For nodes (x, y) ∈ [1, . . . , Nα],
(u, v) ∈ [1, . . . , Nβ ] and the original set of edges (Eαβ)0 =
[(x, u), (y, v)]. The double-edge swap algorithm transforms
the set into (Eαβ)1 = [(x, v), (y, u)] only if these connections
were not present in the original version (Eαβ)0 to prevent the
generation of a multigraph (i.e. multiple connections between
two nodes). We will now present the results obtained when
applying these topological analyses to the retinal connectome
network.

2. Results

To guide our topological analysis, we initially explored the
non-weighted overlap distribution between layers to provide a
brief network structure overview. The image 3 compares the
degree distribution curve in a monolayer model to the overlap
degree distribution in the multilayer model. The monolayer
representation, conclusively, fails to capture distinct dynamics
between cell types, unlike the multilayer model. In the
Appendix, we compared the weight distribution between
layers, further affirming the inability of a monolayer model to
discern layer-specific dynamics. Image 3 and Appendix image
15 reveal varying dynamics between the two amacrine cells,
reinforcing our initial hypothesis to segregate the group.

After confirming the advantages of the multilayer frame-
work, we explored interlayer topological properties, focusing
on the degree distribution between layers (Appendix image
17). The graph unveils two types of information flow. The
degree distributions of connections from the last step of retinal
processing (i.e. Ganglion) to the first step (i.e. Bipolar)
show a short variation near the peak, representing backward
information flowing. In contrast, degree distributions of the
second information flow (i.e. from Bipolar to Ganglion) have
a larger variation. We named these mechanisms feedback
and feedforward, illustrated in the image 4. As previously
introduced, there are three main pathways for the forward
information flow, BC→MWAC→GC, BC→NAC→GC and
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Fig. 3. a) The histogram depicts the degree distribution of the monolayer model,
with the dark line representing a polynomial fit of the distribution. b) The linear fitting
functions extracted from the overlap degree distribution for each layer in solid line
(red = BC, green = NAC, yellow = MWAC, blue = GC). The linear fitting function
from the graph a) in the dashed black line. The graph illustrates that a monolayer
representation fails to capture all the dynamics of the network. bc=bipolar cell, nac=
narrow-field amacrine, mwac=medium/wide-field amacrine,gc= ganglion cell.

Fig. 4. Collection of intralayer degree distributions. a) Representation of the feedback
patterns. The curves originate from the upper triangular part of the complete 4x4
layers across layers degree distribution image, visible in the Appendix 17. All of
these degree distributions exhibit a short variation near the peak, representing
the information flow from ganglion cells to bipolar cells. b) Representation of
feedforward patterns. The curves originate from the lower triangular part of the
complete Appendix Image 17. The information flows from the bipolar cells to the
ganglion cells, and these distributions are characterized by being long-tailed.

BC→GC. Each pathway controls information differently due
to its unique collection of degree distribution.

To confirm these three types of information flow pathways,
we analyzed three types of local clustering coefficients (Image
2). Summarizing the properties visible in the Appendix image
20, MWAC and GC coefficients are consistently relatively
close to the null hypothesis. In contrast, NAC and BC tend to
have higher coefficients than the randomized network. Finally,
the condensation clustering is higher for the MWAC than
NAC.

Analyzing the rich-club coefficient requires computing a
set of randomized matrices for normalization. The Mat-D-
E-S-Algorithm implementation for randomizing asymmetric
matrices is depicted in the Appendix image 18. The results
exhibit similarities to a double-edge swap transformation
using the Networkx package in Python (18), affirming the
correctness of our algorithm. Rich-club nodes in our network
are present in intralayer matrices. The most notable set is in
the BC layer for nodes with degrees greater than 32, while a
smaller set is visible for the NAC with degrees in the range
of [58, 64] (Image 5). These hubs must play a crucial role
in regulating information flow and comparing inputs from
different locations, given their high connectivity.

Fig. 5. a) The graph depicts the bipolar cell intralayer network with the rich-club
outstanding node in red (degree exceeding 32). The edges between one of the red
nodes and its neighbors are in black, while the edges connecting two high-degree
nodes are in red. b) A similar graph after the network underwent a double-edge swap
transformation. The connections between rich-club nodes are drastically reduced.
c) The original rich-club coefficient of the connectome and the average of the same
coefficient derived from partially randomly generated graphs. The left plot represents
the bipolar cell, and the right one represents the narrow amacrine cells.

3. Discussion

Through the study, we unveiled layer-specific network
features, including a feedforward mechanism characterized
by a heavy-tailed degree distribution, and a feedback
mechanism characterized by a sharper degree distribution.
It is reasonable to consider that the variation in the size
of the layer may be responsible for these distinct shapes.
For instance, there is a 1/10 ratio between the number
of Ganglion and Bipolar cells, resulting in a smaller set
capable of producing feedback. However, it is important
to highlight that the distribution pattern stays consistent
even when considering sets with smaller size variations,
such as the connection between Amacrine and Bipolar
cells, contradicting the first intuition. Furthermore, the
feedforward mechanism varies between layers, and we
hypothesize that these distribution functions inform about
condensation and expansion factors in the network. Another
valid question is: ”Why can we relate the number of
connections with the retinal processing?”. The answer lies
in the retinal processing Appendix schematics 10. The
final product of the computation is a weighted sum of the
inputs that can be approximated by a Difference of Gaussian.
Modifying the number of edges changes the sum, leading to
different Gaussian forms (tighter, more spread,...). Indeed,
we hypothesize that the representation of the Ganglion
receptive field in Appendix image 10 is incorrect. Instead
of a slow linear compression of inputs until it matches
the bottleneck size generated by the ganglion, alternative
cell-type-specific mechanisms, such as expansion, come into
play. After compiling the results obtained from the degree
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Fig. 6. The image illustrates a potential information flow pathway from the Bipolar to the medium/wide-field Amacrine terminating in the Ganglion. a) Schematic of the specificity
of the pathway. b) The variation of the local clustering coefficient during the pathway. In the boxplot, the first column represents the original network, and the second is the
average of randomized graphs. The MWAC pathway uniquely exhibits a late high condensation coefficient, emerging only during the connection with GC. All specificities
deviating from the null model are marked with a red star in (a), though they do not represent statistical evidence. The clustering coefficients in (b) are converted into the number
of connections shown in (a), providing a conceptual idea of connections.

distribution and the local cluster coefficient, we are able to
describe two main information flow pathways. The MWAC
pathway (Image 6) condenses information during the transfer
to Ganglion cells. This implies a high number of node pairs
in MWAC merging into one specific Ganglion, a mechanism
correctly represented in the schematic in Appendix 10. This
condensation step depends on this cell specific subtype, and
narrow Amacrine cells do not exhibit this behavior. Image
7 shows the topological properties of the NAC pathway,
differing from MWAC by a high horizontal coefficient and
mainly by the expansion factor occurring between the BC
and the NAC. The specificity is even more outstanding
due to differences with the null hypothesis. In comparison
to the MWAC condensation which seems to be implied
by the degree of the network due to low disparity with
the randomized graphs, the NAC expansion does instead
not originate from the degree distribution of the graph.
Observing this, the network exhibits multiple possible
information flow pathways: either expansion, condensation,
or even a combination thereof through connections between
the two Amacrine cell types. In the course of our study, we
not only identified the cell and pathway that resolve the
bottleneck hypothesis proposed by Nassi J. et al. (2), but
we also unveiled an unexpected expansion pathway. We
hypothesize that the expansion facilitates the extraction of
specific visual features by generating parallel streams. This
mechanism is analogous to what is observed in the field of
computer vision with convolutional neural networks, where
increasing the number of channels simplifies the features
extraction.

While the topological analysis of the network has enabled
us to uncover specific behaviors, we are aware that there is still
room for improvement in modeling connectome networks. The
dataset lacks the light-sensitive receptor cells, a key element in
retinal processing, limiting the exploration of their connection
with the BC rich-club. Additionally, the dataset contains little

information on the types of synaptic connections, including
the directions, the type of neurotransmitters, and the surfaces
of contact. All these parameters will modify the dynamic of
connections (19). However, the initial challenge in analysing
this connectome network did not arise from the data but
rather from a lack of mathematical foundations for accurate
topological analysis. Most definitions of multilayer analysis
focus on multiplex graphs without generalization to adjacency
matrix equations. Expanding the application of the shortest
pathway algorithm could be a useful next step to uncover
additional topological properties in interconnected models.
Finally, further investigation into the modularity model could
yield interesting results, as it appears more correlated with
the cell position than with the cell types (Appendix image 12).
The next objective could be merging the modular and the
multilayer models for a more precise network representation.

4. Conclusion

In general, the analysis of brain networks consistently
uncovers an evolutional competitive selection process (1).
The retinal network is forced to adapt to constraints imposed
by the optic nerve bottleneck. This restriction enhances
the emergence of diverse mechanisms like rich-club hubs,
expansion, and condensation of information flow to correctly
extract the information of a visual scene. As these topological
properties are cell-type-specific, it was necessary to develop an
interconnected multilayer model instead of a monolayer one.
In a subsequent step, we extended mathematical definitions
and developed a pipeline with three algorithms specifically
designed for interconnected models. We highlighted two
pathways: the medium/wide-field Amacrine cells mainly
condensing the connections and the narrow Amacrine cells
expanding the information flow.
After all of this, one may pose the question, ”Why is it
important to comprehend retinal processing in its entirety?”.
To this end, we must contemplate the potential impact that
such analysis could exert on medicinal therapy, exemplified by
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Fig. 7. The image illustrates the NAC pathway from the Bipolar to the narrow Amacrine, terminating in the Ganglion. a) Schematic of the possible specificity of the pathway.
b) The variation of the local clustering coefficient during the pathway. The first column represents the original network, the second is the null hypothesis. NAC exhibits an
early-stage expansion mechanism enhanced relative to the null hypothesis. Additionally, the horizontal local clustering coefficient is increased after this enlargement in the NAC
layer. All specificities deviating from the null model are marked with a red star in (a), though they do not represent statistical evidence. The clustering coefficients in (b) are
converted into the number of connections shown in (a), providing a conceptual idea of connections.

the Ophthalmic Translational Research Group of Professor
Bence György at the Institute of Molecular and Clinical
Opthalmology of Basel. Their use of viral therapy to induce
light sensitivity in retinal cells for vision restoration is notable.
Considering that targeting the rich-club cells might offer an
avenue to enhance the effect of viral injection, this constitutes
a sufficient reason to analyze retinal connectome networks
and to expand the mathematical framework of interconnected
multilayer graphs.

Materials and Methods

Dataset. The dataset originates from NeuroData website (20) and
has been partially preprocessed by Eric Jona (21). From the
properties of the neuronal connection, the network is extremely
dense with multiple synapses between two cells (Appendix Image 8).
For this reason, we decided to model the number of connections
(i.e. synapses) as a weight. A visualization of the network is
represented in the image 1 using the Pymnet python package (22).

Algorithm. To our knowledge, the three algorithms are the first ones
capable of computing rich-club and local clustering coefficients

while generating a randomized network only based on the super-
adjacency matrix of a multilayer graph. For most of the algorithms,
the dataset was transformed into an unweighted matrix to have
a more efficient double-edge swap randomization (i.e. with a
weighted matrix, the algorithm is constrained to exchange same-
weight edges). All Algorithm pseudo-codes are visible in the
Appendix (Mat-RC-Algo 1, Mat-ClustCoeff-Algo 2, and Mat-D-E-
S-Algo 3). We decided to generate 20 types of random models per
submatrix. The number of swaps is randomly selected between
one to five times the number of edges already present in the graph.
To ensure that the number of randomly generated graphs was not
a limiting factor for the rich-club analysis, we performed the same
analysis using 100 random graphs with increased numbers of swaps.
After an extensive simulation, we obtained identical results.
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Algorithm 1 Mat-RC-Algo ▷ Return a vector of Rich-club coefficients for each degree
Require: Mat ▷ Matrix of size NxM
Ensure: Ω(k)

degreem ←
∑M

i=1 Aij

degreen ←
∑N

j=1 Aij

k ← 0
Maxk ← max(degreen, degreem)
while k <= Maxk do

Booldegm ← degreem > k
Booldegn ← degreen > k
Ek ← BooldegT

n ×Mat×BooldegT
m

Nkm ←
∑N

j=1 Booldegmj

Nkn ←
∑M

i=1 Booldegin

Nk ← Nkn + Nkm

if Mat = MatT then ▷ In case of Symmetrical Matrix (intralayer)
Nk ← Nk

2
Ek ← Ek

2

Ω(k)← 2Ek
Nk×(Nk−1)

k ← k + 1

Algorithm 2 Mat-ClustCoeff-Algo ▷ Return the local clustering coefficient for expansion or condensation
Require: Intralayermatrix, Interlayermatrix
Ensure: Clustering Coefficient(vi)

for vi in Interlayermatrix do
Nbr T riangle← 0
Matrice T riples← vi ⊗ vi ▷ Return the matrix revealing of triples
T uples T riples← return non zero idx(Matrice T riples) ▷ Return unique and sorted tuples of the index where the

matrix is non-zero
for tupj in T uples T riples do

if Intralayermatrix[tupj ] = 1 then ▷ The triple is closed→ Triangle
Nbr T riangle+ = 1

Degreevi ←
∑N

j=1(vi)j

Clustering Coefficient(vi)← 2∗Nbr T riangle
(Degreevi∗(Degreevi−1))

Algorithm 3 Mat-D-E-S-Algo ▷ Return a randomized version of the matrix (Code structure similar to Networkx function)
Require: Matrix, Nbr swap
Ensure: Random Matrix

swap = 0
degree1 ←

∑M

i=1 Matrixij

degree2 ←
∑N

j=1 Matrixij

cdf1 ← netowrkx.utils.cumulative distribution(degree1) ▷ Return cumlative distribution function
cdf2 ← netowrkx.utils.cumulative distribution(degree2)
while swap < Nbr swap do

u← Return sample from(cdf1) ▷ Node from layer 1
x← Return sample from(cdf2) ▷ Node from layer 2
Neighboru ← return index(Matrix[:, u]) ▷ Return non-zero index corresponding to interlayer neighbors
Neighborx ← return index(Matrix[x, :])
v ← random.choice(Neighborx)
y ← random.choice(Neighboru)
if Matrix[y, v] ̸= 1 and Matrice[x, u] ̸= 1 then ▷ Check if none of these connections already existed

Matrix[x, v] = 0
Matrix[y, u] = 0
Matrix[x, u] = 1
Matrix[y, v] = 1
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Nodes GC NAC MWAC BC
GC 35 215 206 461

NAC 215 180 351 606
MWAC 206 351 171 597

BC 461 606 597 426
Table 1. Nodes per layers. GC= ganglion cells, NAC= narrow amacrine cell, MWAC= medium/wide-field amacrine cell, BC= bipolar cell.

% Edges per layer GC NAC MWAC BC
GC 3.6 12.3 9.6 14.7

NAC 28.3 12 33.5 26.2
MWAC 31.2 47.2 18.7 49.4

BC 36.9 28.5 38.2 9.7

Total 12320 28432 40020 30922
Table 2. Percentage of Edges per layers. The last line is the total number of edges for the specific layer. GC= ganglion cells, NAC= narrow
amacrine cell, MWAC= medium/wide-field amacrine cell, BC= bipolar cell
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5. Python Code

The code and data are available on GitHub:
https://github.com/robinduvoisin/Multilayer Retinal Connectome Analysis

6. Images
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Fig. 8. 3D representation of the connectome. The x,y,z axes represent distances in µm. a) Illustration of the synaptic connections between two cells. The blue dot represents
the cell, and the red dots depict synaptic connections. Saving the exact positions of all synapse connections for the entire network would be computationally heavy, thus we
aggregated all synapses into a weight parameter. In this case, the weight would be 15. b) An example of all connections made by a randomly selected cell (yellow dot). The
thickness of the line represents the weight of the connection. c) Visualization of cell position with color separation based on cell types: red dots for Bipolar cells, green dots for
narrow Amacrine cells, orange for medium/wide-field Amacrine cells, and blue for Ganglion cells.

Fig. 9. The schematic depicts the retinal processing network, sourced from the article authored by L.Lagnado et al.(15). The connectome was limited to Bipolar, Amacrine, and
Ganglion cells. We can observe the distinction between the vertical (BC and GC) and horizontal (AC) intervention of the cells.
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Fig. 10. The image is sourced from the website https://lavalle.pl/vr/node136.html by Steven M. LaValle (visited 18.02.2024). It illustrates the input that activates a typical
ganglion cell. a) The light-sensitive receptor cell information undergoes condensation until it reaches a ganglion cell. The input from the receptor cells in the center of the field
will be selective to a distinct feature compared to the receptor cells surrounding the field. b) The ganglion cell responds to a Difference of Gaussian input. This graph serves as
an example of the input that would excite a type of Ganglion cell (i.e. a high red component in the middle that contrasts with a low green component in the surroundings or
similar with yellow and blue)

Fig. 11. Two representations of the monolayer graph from the dataset. a) Color classification based on cell type. b) Color classification using a community detection algorithm
based on modularity with visualization by Gephi. The two segmentations do not tend to be correlated.
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Fig. 12. The network is represented with nodes positioned correctly along the y and z axes with color segmentation based on community detection (image 11), where grey color
replaces all smaller communities (≤1% of the network). The modularity segmentation appears to be more correlated with the cell position than the cell type. This observation
could indicate a columnar organization in the retinal network.

Fig. 13. The image originates from the article written by Kivelä et al.(8). It illustrates the difference between a) an interconnected network and b) a multiplex network.
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Fig. 14. The image is solely a schematic representation of the transformation from a monolayer to a multilayer model. a) The weighted supra-adjacency matrix is extracted from
the connectome dataset. The weight is color-graded, where blue corresponds to no edges. The X and Y axes represent the cell ID numbers. b) The inter and intra matrices
between each layer. These matrices are extracted from a) after an initial unweighted transformation, followed by separation based on cell types.
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Fig. 15. a) Multilayer model: The weight logarithmic inversed cumulative distribution function of inter- and intralayers. The title indicates the two layers being analyzed. The
curve represents a linear fit of the function, with the legend denoting the slope (i.e., since it’s a log plot, the slope is, in reality, an exponential factor). b) Similar graph for the
Monolayer model: The slope of the monolayer model does not encompass all the slopes observed in the multilayer model. This image reaffirms the inability to capture the
network’s behavior adequately through a monolayer model.
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Fig. 16. The unweighted Supra-adjacency matrix of the connectome. The X and Y axes represent the cell identification number. GC= ganglion cell, BC= bipolar cell,
NAC=narrow amacrine cell, MWAC= medium/wide-field amacrine cell.
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Fig. 17. Illustration of the degree distribution of inter- and intralayers. In the upper triangular part of the graph, we observe all connections from the Ganglion to the Amacrine,
from the Ganglion to the Bipolar, and from the Amacrine to the Bipolar cells. These degree distributions exhibit a short variation near the peak, representing information flowing
backward, commonly known as feedback. In the lower triangular part, we observe the feedforward dynamic, where information flows from the Bipolar to the Ganglion cells.
These distributions are notably broader.
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Fig. 18. a) The intralayer adjacency matrix of Bipolar cells before and after the double-edge swap algorithm from Networkx. The X and Y axes represent the cell identification
number. b) The interlayer adjacency matrix between Bipolar and Amacrine cells before and after the double-edge swap performed by our algorithm Mat-D-E-S-Algo. It is
evident that our algorithm is capable of randomizing a non-symmetrical matrix to later compare topological properties, such as rich-club, to a null model. The X and Y axes
represent the cell identification number.

Fig. 19. All Rich-Club coefficients computed on the connectome network (red line) and on a randomized version of it (dashed black line). Any disparity between the two lines
indicates that the rich-club coefficient is greater than 1, revealing a hub for that specific degree. GC=ganglion cell, NAC=narrow amacrine cell, MWAC=medium/wide-field cell,
BC=bipolar cell.
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Fig. 20. All local clustering coefficients computed on the connectome network (blue) and on a randomized version of it (green). a) The Horizontal coefficient, specific to triangles
on a single plane (intralayer). b) The condensation clustering coefficient represents triangles that initiate from an early layer in the retinal processing, involving two connected
nodes that converge into one node in a late layer. c) The expansion originates from one node in an early stage of retinal computation, connected with two other nodes in a later
stage. GC=ganglion cell, NAC=narrow amacrine cell, MWAC=medium/wide-field cell, BC=bipolar cell.
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